Propositional Logic and the Satisfiability Problem

- Propositional Logic
- The Satisfiability Problem
- Semantic Equivalence
- Normal Forms
- Complexity
Propositional Logic

Definition An alphabet of propositional logic consists of

- a (countably) infinite set $\mathcal{R} = \{p_1, p_2, \ldots\}$ of propositional variables,
- the set $\{\neg/1, \land/2, \lor/2, \rightarrow/2, \leftrightarrow/2\}$ of connectives, and
- the special characters “(” and “)”.

Indices are sometimes omitted.

We will occasionally use other letters to denote variables.

Different alphabets of propositional logic differ in \mathcal{R}.

Instead of p_i we could have used i as propositional variable.
Propositional Formulas

Definition An atomic formula, briefly called atom, is a propositional variable.

Definition The set of propositional formulas is the smallest set \(\mathcal{L}(\mathcal{R}) \) of strings over an alphabet of propositional logic with the following properties:

1. If \(F \) is an atomic formula, then \(F \in \mathcal{L}(\mathcal{R}) \).
2. If \(F \in \mathcal{L}(\mathcal{R}) \), then \(\neg F \in \mathcal{L}(\mathcal{R}) \).
3. If \(\circ/2 \) is a binary connective, \(F, G \in \mathcal{L}(\mathcal{R}) \), then \((F \circ G) \in \mathcal{L}(\mathcal{R}) \).

Definition A literal is an atom, or a negated atom. The complement \(\overline{L} \) of a literal \(L \) is defined as follows:

- If \(L \) is an atom \(A \), then \(\overline{L} = \neg A \),
- if \(L \) is a negated atom \(\neg A \), then \(\overline{L} = A \).

A pair \(L, \overline{L} \) of literals is said to be complementary.
Some Notation

- **Notation**
 - A (possibly indexed) denotes an atom,
 - L (possibly indexed) denotes a literal,
 - F, G, H (possibly indexed) denote propositional formulas,
 - $\mathcal{F}, \mathcal{G}, \mathcal{H}$ denote sets of propositional formulas.
3.2 Semantics

- The set of truth values \mathcal{W} is the set $\{\top, \bot\}$.

- We consider the following functions on \mathcal{W}:
 - Negation $\neg^* / 1$.
 - Conjunction $\land^* / 2$.
 - Disjunction $\lor^* / 2$.
 - Implication $\rightarrow^* / 2$.
 - Equivalence $\leftrightarrow^* / 2$.

\[
\begin{array}{c|ccccc}
\text{Truth Values} & \neg^* & \land^* & \lor^* & \rightarrow^* & \leftrightarrow^* \\
\hline
\top & \bot & \top & \top & \top & \top \\
\top & \bot & \bot & \top & \bot & \bot \\
\bot & \top & \bot & \top & \bot & \bot \\
\bot & \bot & \bot & \bot & \bot & \bot \\
\end{array}
\]
3.2.2 Interpretations, Models and Logic Consequences

Definition An interpretation \(I = (\mathcal{W}, \cdot^I) \) consists of the set \(\mathcal{W} \) and a mapping \(\cdot^I : \mathcal{L}(\mathcal{R}) \rightarrow \mathcal{W} \) with:

\[
[F]^I = \begin{cases}
 w \in \mathcal{W} & \text{if } F \in \mathcal{R}, \\
 \neg^* [G]^I & \text{if } F \text{ is of the form } \neg G, \\
 ([G_1]^I \circ^* [G_2]^I) & \text{if } F \text{ is of the form } (G_1 \circ G_2).
\end{cases}
\]

Definition An interpretation \(I = (\mathcal{W}, \cdot^I) \) is called a model for a propositional formula \(F \), in symbols \(I \models F \), if \([F]^I = \top \); in this case we say that \(I \) satisfies \(F \).

Definition \(F \) is unsatisfiable if it has no models. \(F \) is valid if all interpretations are models.

Definition An interpretation \(I = (\mathcal{W}, \cdot^I) \) is called a model for a set \(\mathcal{G} \) of propositional formulas, in symbols \(I \models \mathcal{G} \), if \([F]^I = \top \) for all \(F \in \mathcal{G} \); in this case we say that \(I \) satisfies \(\mathcal{G} \).
Representation of Interpretations

- An interpretation $I = (\forall, \cdot^I)$ is uniquely defined by specifying how \cdot^I acts on atoms.
 - I can be represented by $\hat{I} = \{ L \in \mathcal{L}(\mathcal{R}) \mid [L]^I = \top \}$.

- **Note**
 - \hat{I} does not contain a complementary pair of literals.
 - \cdot^I is a total mapping from $\mathcal{L}(\mathcal{R})$ to \forall.
 - Hence, for each $A \in \mathcal{L}(\mathcal{R})$ either $A \in \hat{I}$ or $\overline{A} \in \hat{I}$ but not both.

- In the sequel, we will identify I with \hat{I}.

- **Definition** Let J be a set of literals not containing a complementary pair. J is a partial interpretation if there is an A such that neither $A \in J$ nor $\overline{A} \in J$.
Some Additional Notation

- I, J (possibly indexed) denote interpretations.
- We often write F^I instead of $[F]^I$.
- We define the following precedence hierarchy among connectives:

 $\neg \succ \{\lor, \land\} \succ \rightarrow \succ \leftrightarrow$.

- We sometimes omit parentheses taking into account that conjunction and disjunction are associative and commutative.
Propositional Satisfiability Problems

Definition A propositional satisfiability problem, briefly called SAT, consists of a formula $F \in \mathcal{L}(\mathcal{R})$, and is the problem to decide whether F is satisfiable.

SAT is a combinatorial decision problem.

- Decision variant yes/no answer.
- Search variant find a model if F is satisfiable.
A Simple SAT Instance

- Let \(F = p_1 \)
 \[\land (p_1 \lor p_2) \]
 \[\land (p_1 \rightarrow p_3) \]
 \[\land (p_1 \land p_3 \rightarrow p_4) \]
 \[\land (p_5 \lor p_6) \]
 \[\land (p_5 \rightarrow p_7) \]
 \[\land (\neg p_5 \lor p_8) \]
 \[\land (\neg p_7 \lor \neg p_8). \]

- \(\{p_1, p_2, p_3, p_4, \neg p_5, p_6, \neg p_7, \neg p_8\} \cup \{p_i \mid 8 < i\} \) is a model for \(F \).

- Hence, \(F \) is satisfiable.

- How can we find such a model?
Subformulas

► Definition Let F be a propositional formula. The set of subformulas of F is the smallest set of formulas $S(F)$ satisfying the following conditions:

1. $F \in S(F)$.
2. If $\neg G \in S(F)$, then $G \in S(F)$.
3. If $(G_1 \circ G_2) \in S(F)$, then $G_1, G_2 \in S(F)$.

► Example

\[S(\neg((p_1 \rightarrow p_2) \lor p_1)) \]
\[= \{ \neg((p_1 \rightarrow p_2) \lor p_1), ((p_1 \rightarrow p_2) \lor p_1), (p_1 \rightarrow p_2), p_1, p_2 \}. \]
Semantic Equivalence

- **Definition** Two propositional formulas F and G are **semantically equivalent**, in symbols $F \equiv G$, if for all interpretations I we have: $I \models F$ iff $I \models G$.

- **Some equivalence laws**:

 - $\neg\neg F \equiv F$ \hspace{1cm} \text{double negation}
 - $\neg(F \land G) \equiv (\neg F \lor \neg G)$ \hspace{1cm} \text{de Morgan}
 - $\neg(F \lor G) \equiv (\neg F \land \neg G)$
 - $(F \land (G \lor H)) \equiv ((F \land G) \lor (F \land H))$ \hspace{1cm} \text{distributivity}
 - $(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$
 - $(F \leftrightarrow G) \equiv ((F \land G) \lor (\neg G \land \neg F))$ \hspace{1cm} \text{equivalence}
 - $(F \rightarrow G) \equiv (\neg F \lor G)$ \hspace{1cm} \text{implication}
 - $(F \lor G) \equiv F$, if F is valid
 - $(F \land G) \equiv G$, if F is valid \hspace{1cm} \text{tautology}
 - $(F \lor G) \equiv G$, if F is unsatisfiable
 - $(F \land G) \equiv F$, if F is unsatisfiable \hspace{1cm} \text{unsatisfiability}
Replacement

- $F[G \leftrightarrow H]$ denotes the formula obtained from F by replacing an occurrence of $G \in S(F)$ by H.

 - Usually, the context determines which occurrence is meant.
 - Sometimes the condition $G \in S(F)$ is omitted. In this case, if $G \notin S(F)$, then $F[G \leftrightarrow H] = F$.

- Replacement Theorem If $G \equiv H$, then $F[G \leftrightarrow H] \equiv F$.

- Exercise Proof the replacement theorem by structural induction.
Generalized Disjunctions and Conjunctions

- **Generalized disjunction**

\[
[F_1, \ldots, F_n] = (\ldots ((F_1 \lor F_2) \lor F_3) \lor \ldots \lor F_n)
\]

- **Generalized conjunction**

\[
\langle F_1, \ldots, F_n \rangle = (\ldots ((F_1 \land F_2) \land F_3) \land \ldots \land F_n)
\]

- **Empty generalized disjunction:** \([\]\) with \([\]^I = \bot\) for all \(I\).

- **Empty generalized conjunction:** \(\langle \rangle\) with \(\langle \rangle^I = \top\) for all \(I\).

- We may extend our language by adding \(\langle \rangle\) and \([\]\) to the alphabet and treating them as atoms.
Conjunctive Normal Form

- **Definition**
 - A clause is a generalized disjunction \([L_1, \ldots, L_n]\), \(n \geq 0\), where every \(L_i, 1 \leq i \leq n\), is a literal.
 - A formula is in conjunctive normal form (clause form, CNF) iff it is of the form \(\langle C_1, \ldots, C_m\rangle\), \(m \geq 0\), and if every \(C_j, 1 \leq j \leq m\), is a clause.

- A formula \(F\) in CNF is said to be in \(n\)-CNF if each clause occurring in \(F\) has at most \(n\) literals.
More on Clauses

- A clause is a Horn clause if at most one disjunct is an atom.
- A formula F in CNF is a Horn formula if it contains only Horn clauses.
- A clause is a unit clause if it contains precisely one literal.
- A clause is a binary clause if it contains precisely two literals.
- Observation A clause containing a complementary pair of literals is valid.
More Notation

- \(C \) (possibly indexed) denotes a clause.

- Clauses and formulas in CNF are sometimes considered as sets of literals and clauses, respectively, in which case
 - \(L_i, 1 \leq i \leq n \), are said to be elements of \([L_1, \ldots, L_n]\) and
 - \(C_j, 1 \leq j \leq m \), are said to be elements of \(\langle C_1, \ldots, C_m \rangle\).

Note that in sets duplicates are removed!
Transformation into Clause Form

- **Theorem** There is an algorithm which transforms any propositional formula into a semantically equivalent formula in clause form.

- **Observation**
 - All equivalences can be eliminated using the law
 \[F \leftrightarrow G \equiv (F \land G) \lor (\neg F \land \neg G). \]
 - All implications can be eliminated using the law
 \[F \rightarrow G \equiv \neg F \lor G. \]
 - Hence, we can assume that only the connectives \(\neg, \land \) and \(\lor \) occur in formulas.
An Algorithm for the Transformation into Clause Form

- **Input:** A propositional formula F.
- **Output:** A formula, which is in conjunctive normal form and is equivalent to F.

$G := \langle[F]\rangle$. (G is a conjunction of disjunctions.)

While G is not in conjunctive normal form do:
- Select a non-clausal element H from G.
- Select a non-literal element K from H.
- Apply the rule among the following ones which is applicable.

\[
\begin{align*}
\neg\neg D & \quad \neg(D_1 \lor D_2) \\
D & \quad D_1 \lor D_2 \\
\neg(D_1 \land D_2) & \quad D_1, D_2 \\
\neg D_1, \neg D_2 & \quad \neg(D_1 \lor D_2) \\
\end{align*}
\]

- A rule $\frac{D}{D'}$ is applicable to K if K is of the form D.
- If applied, then K is replaced by D'.

- A rule $\frac{D}{D_1|D_2}$ is applicable to K if K is of the form D.
- If applied, H is replaced by two disjunctions:
 - The first one is obtained from H by replacing the occurrence of D by D_1.
 - The second one is obtained from H by replacing the occurrence of D by D_2.
An Example

- Let $F = (p \land (p \rightarrow q)) \rightarrow q$.
- F is valid.
- Eliminating implications yields:
 $$\neg(p \land (\neg p \lor q)) \lor q.$$
- Applying the algorithm yields:
 $$\langle [\neg(p \land (\neg p \lor q)) \lor q] \rangle$$
 $$\langle [\neg(p \land (\neg p \lor q), q] \rangle$$
 $$\langle [\neg p, \neg (\neg p \lor q), q] \rangle$$
 $$\langle [\neg p, \neg p \land \neg q, q] \rangle$$
 $$\langle [\neg p, \neg p, q], [\neg p, \neg q, q] \rangle$$
 $$\langle [\neg p, p, q], [\neg p, \neg q, q] \rangle$$
- Both clauses in the final formula contain a complementary pair of literals.
Definitional Transformation

- The size of a formula may grow exponentially during normalization.
- Can we do better?
 - Unfortunately, the shortest CNF of some F is exponential in the size of F.
 - Luckily, we may use a weaker concept.

Definitional transformation (Eder, 1985)

- Let F be a formula, $G \in S(F)$ and $p \notin S(F)$ a propositional variable.
- Replace F by $F[G \leftrightarrow p] \land (p \leftrightarrow G)$.

Some observations

- $F \neq F[G \leftrightarrow p] \land (p \leftrightarrow G)$.
- F is satisfiable iff $F[G \leftrightarrow p] \land (p \leftrightarrow G)$ is satisfiable.
- The above mentioned exponential growth can be avoided.
Reduct of a CNF-Formula

Definition Let F be a CNF-formula and J a partial interpretation. The reduct of F wrt J, in symbols F_J, is obtained by applying the following transformations to F:

1. For all $L \in J$ do:
 - if $L = A$, then replace each occurrence of A in F by $\langle \rangle$.
 - if $L = \overline{A}$, then replace each occurrence of A in F by $[\]$.

2. Eliminate all occurrences of $[\]$ and $\langle \rangle$ by applying the replacement theorem using the laws of validity and unsatisfiability.

Let F be the following formula:

$\langle [p_1], [p_1, p_2], [\neg p_1, p_3], [\neg p_1, \neg p_3, p_4], [p_5, p_6], [\neg p_5, p_7], [\neg p_5, p_8], [\neg p_7, \neg p_8]\rangle$.

Then,

$F_{\{p_1\}} = \langle [p_3], [\neg p_3, p_4], [p_5, p_6], [\neg p_5, p_7], [\neg p_5, p_8], [\neg p_7, \neg p_8]\rangle$.

$F_{\{p_1,p_3\}} = \langle [p_4], [p_5, p_6], [\neg p_5, p_7], [\neg p_5, p_8], [\neg p_7, \neg p_8]\rangle$.

$F_{\{p_1,p_3,p_4\}} = \langle [p_5, p_6], [\neg p_5, p_7], [\neg p_5, p_8], [\neg p_7, \neg p_8]\rangle$.
Computational Complexity

- Let \(\mathcal{P} \) be the class of problems that can be solved by a deterministic Turing machine in polynomial time.

- Let \(\mathcal{NP} \) be the class of problems that can be solved by a nondeterministic Turing machine in polynomial time.

- Obviously, \(\mathcal{P} \subseteq \mathcal{NP} \).

- The question whether \(\mathcal{NP} \subseteq \mathcal{P} \) holds is open.

- A problem that is at least as hard as any other problem in \(\mathcal{NP} \) is called \(\mathcal{NP} \)-hard (in the sense that each problem in \(\mathcal{NP} \) can be polynomially reduced to it).

- An \(\mathcal{NP} \)-hard problem which is in \(\mathcal{NP} \) is called \(\mathcal{NP} \)-complete.
Computational Complexity and SAT

- Let F be a formula containing 1000 different propositional variables.
- There are 2^{1000} different interpretations for F.
- A truth table for F has 2^{1000} rows.
- SAT is \mathcal{NP}-complete.
- This holds even if SAT is restricted to CNF or even 3-CNF formulae (Garey, Johnson 1979).
- SAT is decidable in linear time for DNF, for 2-CNF (Cook 1971) or for Horn formulae (Dowling, Gallier 1984; Scutella 1990).